

QualyGridS Workshop June 2020 Ben Green – ITM Shi You - DTU

Commercial Rationale:

- RE reducing in cost significantly
- RE needs energy storage
- Green Hydrogen now cost competitive
- Multi £bn global addressable markets
- Refinery electrolyser market is ~€90bn*
- Market pull for green hydrogen
- Regulatory push for green hydrogen

*potential electrolyser sales based on 10% of global market requirements met by low-carbon hydrogen

MARKET OFFERING | 2MW TO 10MW Hydrogen energy systems

Building Housed Products: 10MW refinery electrolyser

Containerised Products: 3MW refuelling hub

> **Skid Mounted Products:** 8MW train refuelling station

Building a profitable business through scale, volume and partnerships

5MW Module Development:

- Provisional spec is 2.1 tonne of H₂ per day
- Developed in parallel with manufacturing processes
- From 15 stacks to 4 stacks for 10MW module
- Design integration techniques reduce BoP costs
- Developed for 50, 100, 500MW plants
- First hydrogen scheduled for Q4 2020

Continuous product improvement and cost reduction

VOLUME & SCALE DRIVING EFFICIENCIES Hydrogen energy systems

QualyGridS

ITM Electrolyser Cost Projections

- Based on standardised modular system
 Enablers for cost reduction:
- Manufacturing volume
- Factory semi-automation
- System sizes to grow over time
- Continuous technology improvements

QualyGridS

<€1,000/kW today @ MW scale | <€800/kW @ 10MW | <€500/kW by mid 2020's

SYSTEM FOR FREQUENCY TESTING HYDROGEN ENERGY SYSTEMS

QualyGridS deployment

1.

2.

ialyGridS

Results of FCR first test

- 1. Rectifier output in DC power
- 2. Grid power input to the entire system
- lup = 2200A
- Ilow = 200A
- Imed = 1200A

QualyGridS Test Results

VOLUME & SCALE DRIVING EFFICIENCIES Hydrogen energy systems

Results of FCR first test

- 1. Rectifier output in DC power
- 2. Grid power input to the entire system
- lup = 2200A
- Ilow = 200A
- Imed = 1200A

QualyGridS Test Results

